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Abstract

A 3-component cut of G is a set of vertices whose removal yields a graph with at least three
connected components. The 3-component connectivity number of G is denoted as k3(G) is the
cardinality of minimum number of vertices that must be removed from G in order to obtain a
graph with at least three connected components. In this paper, we identified that for an arithmetic
graph G = V,, where n = p{* x p5? X --- x p&, r > 3 and if a; > 2 for at least one ¢ then the
3-component connectivity number is equal to its connectivity number r.
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1 Introduction

For notation and graph theory terminalogy not given here, we follow [2]. In this paper three com-
ponent connectivity of an Arithmetic Graph G = V,, is studied. A 3-component cut of G is a set of
vertices whose removal yields a graph with at least three connected components. The three component
connectivity number of G is denoted as k3(G) is the cardinality of minimum number of vertices that
must be removed from G in order to obtain a graph with at least three connected components. This
concept was originally introduced by sampathkumar [10] has been recently studied for hypercubes by
Hsu-et-al-in [11]. The definition is from [3]. A 3-component cut of G is a set of vertices whose removal
yields a graph with at least three connected components. The 3- component connectivity number of
G is denoted as k3(G) is the cardinality of minimum number of vertices that must be removed from
G in order to obtain a graph with at least three connected components. The arithmetic graph V,, is
defined as a graph with its vertex set is the set consists of the divisors of n(excludingl) where n is a
positive integer and G = V,,,n = p{! x p5? X - - - x p& where p.s are distinct primes and a}s > 1 and two
distinct vertices a,b which are not of the same parity are adjacent in this graph if (a,b) = p; for some
i, 1 < i < r. The vertices a and b are said to be of the same parity if both a and b are the powers
of the same prime, for instance a = p?, b = p5. This concept was studied from [12]. Also various
authors studied different parameters of an arithmetic graph. In [7] the super connectivity number
of an arithmetic graph is studied by L.Mary jenitha and S.Sujitha. In [5] the connectivity number
of an arithmetic graph is studied by L.Mary jenitha and S.Sujitha. Later, the various parameters of
connectivity of an arithmetic graph are studied by the same authors in [6,8]. The following theorems
are used in sequel.

Theorem 1.1. [6]For an arithmetic graph G=V,,, n =pi* x p3*> where p1 and py are distinct primes,
ai,as > 1 then € = 4a1ao — a1 — ag, where € is the size of the graph G.

Theorem 1.2. [6]For an arithmetic graph G=V,,, n =p{* x p3*> where p1 and py are distinct primes,

ai,as > 1 then G is a bipartite graph.
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Theorem 1.3. [9] For an arithmetic graph G =V, ,n = p{* X p§? x -+ x pir, then the number of
T

vertices of G is |V| = [](a; +1) — 1.

i=1

Theorem 1.4. [6] Let G =V, an arithmetic graph n = p{* X p5? x - - - xpir, for any vertexu = [ p}"
i€B
where B C1,2,3,...r,1 <q; <a;Vi € B.
,

(1) If w = p; where j € 1,2,3,...,r, then deg(u) = [aj I (ai+1)—1] — la; —1].

i=1,i#j
(2) Ifu=p" 1 <a; <a;Vie B, thendeg(u) =] ] (ai+1)]—1
i=1,i¢B
(3) If u= 1] pj",|B| > 2,1 < ; < a;,Vi € B then deg(u) = |B| [ (a;+1)
ieB i=1,i¢B

/ / i
(4) If u= 1] pi", s = 1 for some i € B C B, then deg(u) = [‘B - B ‘ + > ai] I (a;+1) where
i€B ieB'  i=1,i¢B
B is the number of primes product in w, B’ is the number of primes having power 1 in chosen vertex
U.

Observation (1.5). [10] The following are the inequalities of an arbitrary simple non complete
graph G of order n.

(1) kr(G) < kp11(G), for r ={2,3,...,n — 1}

(i) A\r(G) < Mp1(G), for r ={2,3,...,n—1}.

Theorem 1.6. [5] For an arithmetic graph G=V,,, n =p{* x p5*> where p; and ps are distinct primes,
then

/ 1 i=1la;>1;4,7=1,2
H(Vn)IH(Vn) :{ fOTa aj 1,7

2 fora;>1;i=12

Theorem 1.7. [5] For an arithmetic graph G = V;,,n = p{* xp5? x ... x pi where p;,i =1,...,7(r >
2) are distinct primes and a; =1 for all i =1,2,...,r then k(V;) = & (V) = r.

Theorem 1.8. [5] For an arithmetic graph G = V,,n =p]* X p5? x ...... X pirwhere pi. pa,..,pr are
distinct primes and a;'s > 1 for alli =1,2,3,...,7 and n is a product of more than two primes, then

k(Vyp) = Hl(Vn) =

2 The 3-Component Connectivity Number of G =1V,

In this section the 3- component connectivity number of an arithmetic graph G = V,,, where n =

Pt X ps? X e xpiroa; > 1, r>2fori € {1,2,...,r} are categorised.

Theorem 2.1. A 3-component cut does not exist for an arithmetic graph G =V, where n = p{* x
a2
Py’ s a1 =az = 1.

Proof. Consider the arithmetic graph V,,,n = p{* x p3* a1 = as = 1, then n is the product of two
distinct primes. By Theorem1.3, we have |V (G)| = 3. Obviously it is clear that there does not exist
a three component cut. O

Theorem 2.2. If G = V,, is an arithmetic graph where n = p} x py where py and py are distinct
primes then k3(G) = 2.

Proof. Let G = Vj, be an arithmetic graph where n = p? x ps then the vertex set consists of vertices
P1, P2, p2, p1 X P2, P2 X po. Here the only pendant vertex in G is p? and N(p?) = p1 X p2. So the removal
of the vertex p; X ps makes the graph disconnected into two components G; and G, where (G; is an
isolated vertex p? and Go is a path with three vertices p1,p2,p3 X p2. Since (p1,p? x p2) = p1 and
(p2,p? x p2) = p2, the vertex p? x py is the internal vertex of the path. So, the removal of the vertex
p% X po from (9 results the component disconnected into two isolated vertices p; and py. Since the
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induced graph of G — S has three isolated vertices, the set S = {p; X pa,p? X pa} is a 3-component
cut. Also, it is clear that no set S; C S is a 3-component cut, hence S is minimum and we have
r3(G) = |S] = 2. Ol

Theorem 2.3. In an arithmetic graph G = V,, k3(G) = 1 iff n = p{* X pa where p1, pa are distinct
primes and a1 > 2.

Proof. Let G = V,, be an arithmetic graph. Suppose that, the 3-connectivity number, x3(G) = 1.
From the Observation 1.5, k(G) < k3(G) and hence x(G) = 1. By Theorem 1.6, the connectivity
number k(G) = 1 for n = pi* x py but if a; = 1, then G is a tree with three vertices and if a; = 2 then
by Theorem 2.1 k3(G) = 2 . Therefore, the only possibility is n = pj* x pa where a; > 2. Conversely,
consider an arithmetic graph G = V,, n = p{* X pa where a; > 2. To prove that x3(G) = 1 (i.e) to
prove the removal of exactly one vertex makes the graph disconnected into three or more components.
By Theorem 1.6, the connectivity number x(G) = 1 for n = p{* x p2 ;a1 > 1. By the proof of the
Theorem 1.1 and by the definition of an arithmetic graph, (p{",p1 X p2) = p1 ;1 < ag < a; and
N(p]*) = {p1 xp2} for 1 < oy < a; thus it is clear that the number of pendant vertices in G is a; — 1,
and the neighbor for these pendant vertices is a unique vertex p; X pa. Hence S = {p1 X pa2} is a
3-component cut. O

Theorem 2.4. For an arithmetic graph G = Vy,,n = p{* X p3? where a; = az = 2 then k3(G) = 3.

Proof. By Theorem 1.6 k(G) = 2 and S; = {p1,p2}. The removal of S; from G makes the graph
disconnected and the induced graph of G — 57 has exactly two components. Since by Observation 1.5,
k(G) < k3(G) we need to remove few vertices from G — S7 to make the graph disconnected into at
least three components. Since d(p; x p3) = d(p? x p2) = 1 and its neighbor say N(p; x p3) = p? also
N (p? x p3) = p3. Hence either the set S = {S; Up?} or S = {S; Up3} is a three component cut. Since
no subset of S is a 3-component cut, S is minimum. Hence we have k3(G) = |S| =3 O

Theorem 2.5. Let G = V,, be an arithmetic graph, n = pi* X p3* where a; > 2, ag > 2 then k3(G) = 2.

Proof. By Theoreml1.2, G is a bipartite graph with partitions A and B. The partition A consists of
prime vertices, power of prime vertices. Also, the partition B consists of product of primes vertices,
product of power of prime vertices. If a; > 2 and as > 2 then the number of vertices in B, which
are adjacent only to p; and py is at least two. So the removal of the vertices in S = {p1,p2} from
G makes the induced graph G[V — S| disconnected into at least three components. Hence the set
S is a 3-component cut. Also, by Theorem 1.6 x(G) = 2 shows that the set S is minimum. Hence
k3(G) =|S| = 2. O

Theorem 2.6. For an arithmetic graph G = V,,,n = p1 X p2 X p3 the 3-component connectivity number

I<03(G) =4.

Proof. By Theorem 1.3, |[V| = 7 and the vertex set V(G) = {p1, p2, p3,p1 X p2,p1 X P3,D2 X P3,P1 X
p2 X p3}. In this graph if we remove the adjacent vertices S1 = {p1, p2, p3} of a minimum degree vertex
p1 X p2 X p3 the induced graph G[V — Si]| has two components G; and Gy where G is an isolated
vertex p; X pa X p3 and Gg is a complete graph k3. The removal of any vertex from G[V — S| does
not make the graph disconnected into three components. On the other hand, if we remove the set
S = {p1 X p2,p1 X p3,P2 X p3,p1 X p2 X p3} the graph gets disconnected into three components, each
component is an isolated vertex. Since no proper subset of S satifies the definition of 3-component
cut S is minimum. Hence k3(G) = 4. O

Theorem 2.7. For an arithmetic graph G = Vp,n = p{* x pg? x -+ x p2.r > 3 and a; = 1,V i €
{1,2,...,7}. Then k3(G) =2r — 1.

Proof. Consider an arithmetic graph G =V,,, n =p; X po X -+ X p, and r > 3. Then the vertex set
consists of primes, product of two primes, product of three primes,....., product of r —1 primes, product
of r primes. By Theorem 1.7, we know that x(G) = r, if we remove the set S; = {p1, p2,...,pr} from
G then the graph G[V(G) — Si| has two components G; and Gy where G is an isolated vertex
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p1 X p2 X -+ X p, and Go is a connected graph. Hence k3(G) > k(G). Let X1 = { [[ pi : B* C
i€B*
{1,2,...,r, |B*| = r — 1} be the set of minimum degree vertices in the component Ga. Choose
any one of the vertex u € Xj let it be u = p; X p2 X -+ X p,_1, the degree d(u) = r — 1 and
N(u) = {p1 X pr,p2 X Pry ..., pr—1 X pr}. The set S = {p1,p2,...,PrsP1 X Pr,P2 X Py, Pr—1 X pr} is
a 3-component cut. Since G[V — S| has exactly three components G1, G2, G3 where (1 is an isolated
vertex p; X pe X - -+ X p,., GGo is an isolated vertex p; X pg X -+ X p,.—1 and (3 is a connected component
containing vertices such as product of two primes other than the vertices in S, product of three

primes,.....,product of r—2 primes, X1 —{p1 Xpr, p2 Xy . .. pr—1 Xy }. To prove S is minimum, suppose
S" c S be a minimum 3-component cut then GV — S/] has at least three components G1, Ga, G3
where GG1 is an isolated vertex p; X pa X -+ X p,., Go is an isolated vertex p1 X pg X -+ X p,_1 and

G3 is a connected component. Let us assume that v € S and v ¢ S ifv=mp; i€ {1,2,...,r}.
Since (1 is an isolated vertex p; X pa X .-+ X p, then the (p1 X pa X -+ X pp,p;) # p; which is
a contradiction to the definition of an arithmetic graph. Similarly if v = p; X p,—1 then we have
(p1 X p2 X +++ X Pr—1,Pi X pr—1) # pi; which is a contradiction. Therefore S is minimum and by
Theorem 1.4, we have k3(G) = |S| =d(p1 X p2 X -+ X pp) +d(p1 X p2 X -+ X pr_1) — |[W]|.

=r+2(r—1)—(r—1) = 2r — 1, where |w| is the number of vertices which are adjacent to both
p1 X p2 X - X ppand p1 X pg X -+ X pr_j. O

The following example shows that for any arithmetic graph G = V,,, n = p{* x p5*> where a; >
2, a2 > 2 the 3-component connectivity number x3(G) and the connectivity number x(G) are equal.

Example 2.1. The following Figure 1 shows an arithmetic graph G = Vg, 72 = 23 x 32. Clearly the
vertex set consists of vertices V(G) = {2,22,23,3,32,2 x 3, 22 x 3,23 x 3, 2 x 32,22 x 32, 23 x 32}.
The minimum degree 6(G) = 2 and the 3-component cut S = {2,3}.

22 x 32

23

23 x 3

23 x 32

2
Figure 2.1: Arithmetic graph G = Vo

The induced graph G[Vze — S| shown in Figure 2, has three components G1, G2 and G3 where
G, is a connected component, G and Gy are isolated vertices 23 x 32 and 22 x 32 respectively. By
Theorem 1.6, the vertex cut is also {2,3}. This shows that k3(G) = k(G) as well as the vertices in
3-component cut is same as the vertices in the vertex cut.

Theorem 2.8. For an arithmetic graph G = V,,n = p{* x p3? X -~ x pfr,r > 3,a1 = 2 and
aj =1,V je{2,...,r}. Then rk3(G)=r+1.

Proof. Consider an arithmetic graph G = V,, where n = p% X pg X +++ X pp, 7> 3. Then the graph G
contains vertices such as b1, D2, - - apTap%pl X Pp2y...,p1 X pmp% X P2y 7p% X P2,P2 X P3y..Pr—1 X
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22 x 32
22 x 3 P 23

23 %3
22

e 2°x3?
2 x 32

32
2x3

Figure 2.2: Induced graph G[V72 — S|

Dry-eesP1 X P2 X o+ X PryPt X p2 X +++ X pp. By Theorem 1.8 the connectivity number x(G) = r
and the minimum vertex cut is S; = {p1,p2,...,pr}. The induced graph G[V — Si] has exactly two
components G; and G2 where (7 is an isolated vertex p% X pg X -+ X p. and Go is a connected graph
which contains all the vertices other than V(G) — {r + 1} vertices. Now the minimum degree vertex
in the connected component Gy is p1 X p2 X - -+ X p and N(py X pa X -+ X p.) = p3. So, the removal
of the set S = 51 U {p%} from G makes the graph disconnected into exactly three components. Hence
the set S = {p1,p2,...,pr, P} is a 3- component cut. Since the removal of any vertex from the set
S, either violates the connectivity property or the number of components in the induced graph is less
than three. Therefore the set S is minimum. Hence we have k3(G) = |S| =r + 1. O

Theorem 2.9. If G =V, is an arithmetic graph n = p{* X p5? X -+ x p.r > 3,a; > 2 for at least
one i then k3(G) =r.

Proof. Let G =V, be an arithmetic graph where n = p{* xp5? x---xpf, r > 3, Case(i) Let us assume
that a1 > 2 and a; =1 for j € {2,3,...,7}. The vertex set V(G) = {p{"*,p2,...,pr, 07" X Dj, Pr—1 X
Pro., Pt Xpex--xprl <ap <ap,j=1,2...r}. Here the vertices {p]* xpa x---xpr;1 < aq < ar}
has degree r and have unique neighbors say S = {p1,p2,...,pr}. So, the removal of S from G results
the graph disconnected and since a; > 2 the number of isolated vertices in G[V — S] is at least two
and a connected component. Thus the set S satisfies the 3-Component cut definition, hence S is a 3-
component cut. Also, By Theorem1.8 x(G) = r, this shows that S is a minimum 3- component cut.
Hence proved.

Case(ii)If a; > 2 for more than one i. Let us assume that n = pi* x p5? x --- x p% such that
a; > az > ...a,. By the definition of an arithmetic graph, we know that (p{* x p5? X --- X p? . p;) = p;;
fori € {1,2,...,r};2 < oy < a;. Since, a; > 2 the number of vertices in G which are adjacent only
to S ={p1,p2,...,pr} is at least two. Thus the induced graph G[V-S] has at least three components.

Hence by the proof of Theorem 2.9 follows the required result. O

3 Conclusion

From the above study, we observe that for an arithmetic graph G = V,,, if the number of primes in n
is greater than two then the 3-component connectivity number is strictly greater than its connectivity
number. But if the number of primes in n is greater than two and at least one of its prime power is
greater than two then the connectivity number and 3-component connectivity number are same which
is equal to number of primes in n.
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